
Admin Course Overview PL Implementation Haskell Demo

Introduction - 2024

Thomas Sewell Rob Sison
UNSW

Term 3 2024

1

Admin Course Overview PL Implementation Haskell Demo

Who are we?

Lecturers Thomas Sewell and Rob Sison.

Tutors Adam Stucci, Charran Kethees, Thomas Liang, Josh
Lim, Mathieu Paturel, Thomas Qu.

A lot of the material is inherited from previous convenors,
including Johannes Åman Pohjola, Liam O’Connor, Christine
Rizkallah and Gabriele Keller.

2

Admin Course Overview PL Implementation Haskell Demo

Contacting Us

http://www.cse.unsw.edu.au/~cs3161

Forum

Ask about course content on Ed. You can ask private questions to
avoid spoiling solutions to other students.

Administrative questions can be sent to
cs3161@cse.unsw.edu.au.

3

http://www.cse.unsw.edu.au/~cs3161
cs3161@cse.unsw.edu.au

Admin Course Overview PL Implementation Haskell Demo

What do we expect?

Maths

This course uses a significant amount of discrete mathematics.
You will need to be reasonably comfortable with logic, set theory
and induction. MATH1081 is neither necessary nor sufficient for
aptitude in these skills. We teach enough of it to keep the course
reasonably self-contained, but some self-study may be needed.

Programming

We expect you to be familiar with C and at least one other
programming language. Course assignments 1 and 2 are in Haskell.
No advanced Haskell is required, and we will do some
demonstration exercises, but some self-study may be needed.

4

Admin Course Overview PL Implementation Haskell Demo

What do we expect?

Maths

This course uses a significant amount of discrete mathematics.
You will need to be reasonably comfortable with logic, set theory
and induction. MATH1081 is neither necessary nor sufficient for
aptitude in these skills. We teach enough of it to keep the course
reasonably self-contained, but some self-study may be needed.

Programming

We expect you to be familiar with C and at least one other
programming language. Course assignments 1 and 2 are in Haskell.
No advanced Haskell is required, and we will do some
demonstration exercises, but some self-study may be needed.

5

Admin Course Overview PL Implementation Haskell Demo

Assessment

Assignment 0 15%
Assignment 1 17.5%
Assignment 2 17.5%
Final Exam 50%

6

Admin Course Overview PL Implementation Haskell Demo

Tutorials

Start this week on.

You may change tutorials, just seek approval first.

Please attempt some of the questions beforehand.

Tutes are 90 minutes! If the timetable says otherwise, ignore
the timetable!

7

Admin Course Overview PL Implementation Haskell Demo

Assignment 0

Focuses on theory and proofs.

It will be released in Week 3 and due in Week 4.

Aim to have marks back by census date (not guaranteed).

8

Admin Course Overview PL Implementation Haskell Demo

Assignments 1–2

Build a compiler/interpreter component yourself.

Given a formal specification, implement in Haskell.

Released around Week 5 and Week 8

Approximately 2 weeks to complete each assignment.

9

Admin Course Overview PL Implementation Haskell Demo

Lectures

Lectures will be delivered in-person and via Zoom,
concurrently.

Recordings will be made available on Echo360.

Separate lecture notes will also be published on occasion.

10

Admin Course Overview PL Implementation Haskell Demo

Books

There is no textbook for this course. Written lecture notes are
made available throughout the trimester, along with challenge
exercises.
Much of the course material is covered in these two excellent
books, however their explanations may differ and the usual
disclaimers apply — this course does not follow these books
exactly:

Types and Programming Languages by Benjamin Pierce, MIT
Press. https://www.cis.upenn.edu/~bcpierce/tapl/

Practical Foundations for Programming Languages by Bob
Harper, Cambridge University Press.
http://www.cs.cmu.edu/~rwh/pfpl.html

11

https://www.cis.upenn.edu/~bcpierce/tapl/
http://www.cs.cmu.edu/~rwh/pfpl.html

Admin Course Overview PL Implementation Haskell Demo

Course Content

This is a programming language appreciation course. This means
we focus on the three R’s of computer science, giving you the skills
to:

Read and understand new programming languages;

Write your own programming languages; and

Reason about programming languages in a rigorous way.

12

Admin Course Overview PL Implementation Haskell Demo

Why Read?

The choice of programming language affects nearly every aspect of
a system:

Design

Development Costs and Productivity

Safety and Security

Performance

The Obvious

Learning to read and understand new programming languages is a
vital skill in any computing discipline.

13

Admin Course Overview PL Implementation Haskell Demo

Why Write?

You may not implement a general-purpose programming language
like C or Haskell in your career.

However..

Every company has its own hand-rolled domain-specific language
for accomplishing some task, often embedded in another language
in a very ad-hoc and ugly way.

Example

XSLT, Perl scripts for processing text files, CSE’s give system, etc.

Learn how to make a PL properly and save yourself and your
colleagues from headaches.

14

Admin Course Overview PL Implementation Haskell Demo

Why Write?

You may not implement a general-purpose programming language
like C or Haskell in your career.

However..

Every company has its own hand-rolled domain-specific language
for accomplishing some task, often embedded in another language
in a very ad-hoc and ugly way.

Example

XSLT, Perl scripts for processing text files, CSE’s give system, etc.

Learn how to make a PL properly and save yourself and your
colleagues from headaches.

15

Admin Course Overview PL Implementation Haskell Demo

Why Write?

You may not implement a general-purpose programming language
like C or Haskell in your career.

However..

Every company has its own hand-rolled domain-specific language
for accomplishing some task, often embedded in another language
in a very ad-hoc and ugly way.

Example

XSLT, Perl scripts for processing text files, CSE’s give system, etc.

Learn how to make a PL properly and save yourself and your
colleagues from headaches.

16

Admin Course Overview PL Implementation Haskell Demo

Why Reason?

Programming languages are formal languages. Formal specification
and proof allows us to:

Design languages better, avoiding undefined behaviour and
other goblins.

Make languages easier to process and parse. COMP3131

Give a mathematical meaning to programs, allowing for formal
verification of programs. COMP4161, COMP2111,
COMP6721

Develop algorithms to find bugs automatically. COMP3153

Rigorously analyse optimisations and other program
transformations.

These tools are also very important for the pursuit of research in
programming languages.

17

Admin Course Overview PL Implementation Haskell Demo

Why Reason?

Programming languages are formal languages. Formal specification
and proof allows us to:

Design languages better, avoiding undefined behaviour and
other goblins.

Make languages easier to process and parse. COMP3131

Give a mathematical meaning to programs, allowing for formal
verification of programs. COMP4161, COMP2111,
COMP6721

Develop algorithms to find bugs automatically. COMP3153

Rigorously analyse optimisations and other program
transformations.

These tools are also very important for the pursuit of research in
programming languages.

18

Admin Course Overview PL Implementation Haskell Demo

Why Haskell?

While are we foregrounding Haskell in this course?

Ensure you have exposure to a diversity of programming
languages.

It’s a very high-level language.

Reading & writing Haskell is close to reading & writing
semantics.

Functional languages are good for PL work.

Haskell designers are enthusiastic PL adopters.

Adopts lots of new/interesting features before other languages.

Much more of this in COMP3141.

19

Admin Course Overview PL Implementation Haskell Demo

Bridging the Gap

Programmer
Source Language

Computers typically can’t execute source
code directly.

Computer
Machine Code

20

Admin Course Overview PL Implementation Haskell Demo

Bridging the Gap

Programmer
Source Language

Compiler

A compiler translates from source code to
a target language, typically machine code.

Example: C, C++, Haskell, Rust

Computer
Machine Code

21

Admin Course Overview PL Implementation Haskell Demo

Bridging the Gap

Programmer
Source Language

Interpreter

An interpreter executes a program as it
reads the source code.

Examples: Perl, Python, JavaScript
JIT compilers complicate this picture somewhat.

Computer
Machine Code

22

Admin Course Overview PL Implementation Haskell Demo

Bridging the Gap

Programmer
Source Language

Interpreter

Compiler

Some languages make use of a hybrid ap-
proach. First translating the source lan-
guage to an intermediate language (ab-
stract or virtual machine), then interpret-
ing that.

Examples: Java, C#

Computer
Machine Code

23

Admin Course Overview PL Implementation Haskell Demo

Stages of a Compiler

The first stage of a compiler is called a lexer, which, given an input
string of source code, produces a stream of tokens or lexemes,
discarding irrelevant information like whitespace or comments.

Example (C)

int foo () {

int i;

i = 11;

if (i > 5) {

i = i - 1;

}

return i;

}

lexer
=⇒

Ident "int" Ident "foo"

LParen RParen LBrace

Ident "int" Ident "i" Semi

Ident "i" · · ·

24

Admin Course Overview PL Implementation Haskell Demo

Stages of a Compiler

The first stage of a compiler is called a lexer, which, given an input
string of source code, produces a stream of tokens or lexemes,
discarding irrelevant information like whitespace or comments.

Example (C)

int foo () {

int i;

i = 11;

if (i > 5) {

i = i - 1;

}

return i;

}

lexer
=⇒

Ident "int" Ident "foo"

LParen RParen LBrace

Ident "int" Ident "i" Semi

Ident "i" · · ·

25

Admin Course Overview PL Implementation Haskell Demo

Stages of a Compiler

A parser converts the stream of tokens from the lexer into a parse
tree or abstract syntax tree:

Example (Arithmetic)

Lit 3 Times LParen Lit 2 Plus Lit 8 RParen

Times

Num 3 Plus

Num 2 Num 8

26

Admin Course Overview PL Implementation Haskell Demo

Stages of a Compiler

A parser converts the stream of tokens from the lexer into a parse
tree or abstract syntax tree:

Example (Arithmetic)

Lit 3 Times LParen Lit 2 Plus Lit 8 RParen

Times

Num 3 Plus

Num 2 Num 8

27

Admin Course Overview PL Implementation Haskell Demo

Grammars

The structure of lexemes expected to produce certain parse trees is
called a grammar.

Example (Informal grammar for C)

C function definitions consist of:

an identifier (return type), followed by

an identifier (function name), followed by

a possibly empty sequence of arguments, enclosed in
parentheses, then

a statement (function body)

Conclusions

This kind of definition is way too verbose and too imprecise to
specify an implementation.

28

Admin Course Overview PL Implementation Haskell Demo

Grammars

The structure of lexemes expected to produce certain parse trees is
called a grammar.

Example (Informal grammar for C)

C function definitions consist of:

an identifier (return type), followed by

an identifier (function name), followed by

a possibly empty sequence of arguments, enclosed in
parentheses, then

a statement (function body)

Conclusions

This kind of definition is way too verbose and too imprecise to
specify an implementation.

29

Admin Course Overview PL Implementation Haskell Demo

Grammars

The structure of lexemes expected to produce certain parse trees is
called a grammar.

Example (Informal grammar for C)

C function definitions consist of:

an identifier (return type), followed by

an identifier (function name), followed by

a possibly empty sequence of arguments, enclosed in
parentheses, then

a statement (function body)

Conclusions

This kind of definition is way too verbose and too imprecise to
specify an implementation.

30

Admin Course Overview PL Implementation Haskell Demo

Backus-Naur Form

Specify grammatical productions by using a bare-bones recursive
notation. Non-terminals are in italics whereas terminals are in
this typeface.

Example (C subset)

funDef ::= Ident1 Ident2 (args) stmt
stmt ::= expr ; | if (expr) stmt else stmt

| return expr ; | { locDec stmts }
| while (expr) stmt

stmts ::= ε | stmt stmts
expr ::= Number | Ident | expr1 + expr2

| Ident = expr | Ident (expr)
locDec ::= Ident1 Ident2 ;
args ::= ε | · · ·

31

Admin Course Overview PL Implementation Haskell Demo

Stages of a Compiler

Program String

Lexer

Sequence of Tokens

Parser

Parse Tree

Semantic Analyser

Annotated Parse Tree Optimiser
Intermediate
Representation

Code Generator

Machine Code

32

Admin Course Overview PL Implementation Haskell Demo

Stages of a Compiler

Semantic Analysis

Checks variable scoping

Static semantics checks: most
notably type checking.

Adds extra information to the
tree.

Program String

Lexer

Sequence of Tokens

Parser

Parse Tree

Semantic Analyser

Annotated Parse Tree Optimiser
Intermediate
Representation

Code Generator

Machine Code

33

Admin Course Overview PL Implementation Haskell Demo

Stages of a Compiler

Optimisation

Loop unrolling, loop fusion

Inlining, specialisation

Sometimes transforms the tree
dramatically.

Program String

Lexer

Sequence of Tokens

Parser

Parse Tree

Semantic Analyser

Annotated Parse Tree Optimiser
Intermediate
Representation

Code Generator

Machine Code

34

Admin Course Overview PL Implementation Haskell Demo

Stages of a Compiler

Code Generation

Register allocation and explicit
control flow.

Links runtime system (e.g. GC)

Selects appropriate machine
instructions

Program String

Lexer

Sequence of Tokens

Parser

Parse Tree

Semantic Analyser

Annotated Parse Tree Optimiser
Intermediate
Representation

Code Generator

Machine Code

35

Admin Course Overview PL Implementation Haskell Demo

For the remainder of the lecture, we’ll do a hands-on demo, to
introduce Haskell to those who haven’t seen it.

Let’s try to implement a Haskell lexer for the C subset on the
previous slides.

(If you’re just reading the slides, you’ll have to look elsewhere for
this material.)

36

	Admin
	

	Course Overview
	

	PL Implementation
	

	Haskell Demo

